A New Method to Evaluate, Optimize and Forecast Human and Robot Performance in 21st Century Space Operations

G. Rodriguez, C. R. Weisbin, R. Easter

Proceedings of ICASE/USRA Workshop on Revolutionary Aerospace Systems

Concepts for Human/Robotic Exploration of the Solar Systems

December 2001

More In-Depth Quantitative Analysis is Needed to Assess Human-Robot Roles in 21st Century Space Operations

- Relative strengths of humans and robots in performing a wide variety of tasks is well-established CONCEPTUALLY
 - Humans are unequaled in unstructured situations
 - Robots are good at high-risk access
 - Etc.
- There is a wealth of EXPERIENCE to validate these general notions
 - Armstrong's decision-making in lunar terminal descent maneuver could not have been done reliably with robotic spacecraft
 - Robots have gone to "worse-than-hell" places (Venus, Jupiter) not currently accessible to humans
- Systematic comparisons that validate these general concepts have not been fully investigated for a wide range of envisioned surface operations
 - Need standardized METRICS to quantify performance
 - Need rigorously defined criteria to EVALUATE relative performance

Human-Robot Performance Evaluation Process

1. Decompose Scenario

Primitives: Discover rocks, Carry rocks, Traverse, Recover from mishaps, etc.

> Parameters: EVA duration, traverse distance, rock abundance, etc.

2. Quantify **Primitive Parameters**

3. Determine **Aptitudes**

Scores / primitive for each HR system option: data base, thought experiments; consensus models; etc.

Human-Robot (HR) System Options

- 2 Astronauts walk
- 2 Rover scouts
- 2 Astronauts ride transport vehicle
- Robot assists 2 walking astronauts
- 2 Autonomous rovers controlled from Earth
 - State-of-art autonomy: 1 command load for each sol
 - Projected autonomy: 1 command load for multiple sols

4. Compute Composite **Scores**

Multi-primitive scores:

e. g., probability of success

Example: 4 Ways to Do Sequence of 2 Primitives

Aptitude Scoring Table

Performance, Resources & Value-Added

PRIMITIVES	Human	Log	Robot	Log	Human &	Log
	Only	Ratio	Only	Ratio	Robot	Ratio
Discover Samples	8.0	0.0	2.0	-2.0	9.0	0.2
Carry Samples	3.0	0.0	7.0	1.2	8.0	1.4
Relative Performance (bits)		0.0		-0.8		1.6
RESOURCE DEMAND						
System Mass (kg)	140.0	0.0	50.0	-1.5	190.0	0.4
Power (kW)	0.5	0.0	1.0	1.0	1.5	1.6
Relative Resources (bits)		0.0		-0.5		2.0
Relative Value Added (bits)		0.0		-0.3		-0.4

- •Log Ratio = Log₂(Agent Score/Reference Score)
- •Human-only score is used as reference in the table
- •Other references can be used (robot only; human & robot; requirements; etc.)
- •Relative Value = Log Ratio(performance) Log Ratio (Resources)
- •Use of Log Ratios simplifies book-keeping among many other benefits

Field Geology and Sample Collection Scenario -- Discover & Collect Sedimentary Rocks--

- Single EVA Primitives & Requirements
 - Traverse max. safe range; rough, unexplored terrain
 - Discover rocks sedimentary; low % abundance
 - Carry rocks mixed collection & sedimentary
 - Recover from mishaps likelihood of safe return
 - Be there EVA duration
- Other Important Mission Primitives
 - Process rock samples
 - Analyze in-situ & prepare for return to Earth
 - Deploy special payloads
 - •ISRU oxygen generator
 - •Habitat infrastructure (re-visitable)
 - •Power generator & deep drill

Gullies of Mars Valles Marineris. Original image from NASA/JPL/Malin Space Science Systems

A Brief Description of Each Phase in Evaluation Process -- Applied to Field Geology & Sample Collection Scenario--

- 1. Decompose Scenario
- Identify Major Functions: Discover & Identify Rocks; Carry Rocks, Traverse, Recover from Mishaps
- Organize by Scale & Resolution: Astronomical; Planet Globe; Regional; Local Site; System; Sub-System; Components; etc.
- Down-Select to Primitives to be Used for System Evaluation

- 2. Quantify Primitive ParametersFind & Identify Rocks: % Rock A
- Find & Identify Rocks: % Rock Abundance; Single Trial Probability of Success; Sampling Rate; Rock Sampling Time; Expected # of Rock Finds; Effective Traverse Rate
- Carry Rocks: Total Rock Mass & Volume; Loaded Traverse Rate; Traverse Time; Distance
- Recover from Mishaps: Single Mishap Probability of Recovery; Expected Number of Mishaps; Probability of Safe Return

- 3. Determine HR System Aptitudes
- Identify HR System Options & Resources: human only; robot only; combined human-robot; etc.
- Evaluate HR System Performance: thought experiments; models; data bases; analysis
- Quantify HR System Option Resource Demands: mass; power; volume; risk margins; etc.
- Determine Aptitude Scores for Each Primitive and HR System Option

- 4. Compute Composite Scores
- Design Multi-Primitive Tree: Each tree branch represents a primitive score
- Compute Composite System Resources: total mass; power, volume, etc.
- Compute Composite Tree Scores: total performance metrics, e.g., probability of success
- Compute Value-Added: relative performance relative resources with respect to selected reference

Main Issues in Field Geology & Sample Collection

How to get best performance

- Compare levels of performance that can be achieved by various candidate human-robot surface system configuration options
 - •2 EVA Astronauts Walk
 - •2 Rover Scouts
 - •2 EVA Astronauts Ride Rover
 - •Robot Assists 2 Walking EVA Astronauts
 - •2 Autonomous Robots Controlled from Earth

Given that safety is a primary concern

• "Crew safety concerns when entering a region highly dissimilar from any explored before or an area with a high potential for biological activity may dictate the use of a rover in advance of the crew." [Exploration Field Work, Section 2.3, Page 21, Mars Surface Reference Mission: A Description of Human Robotic Activities, edited by S. J. Hoffman, Oct., 1998]

Illustration of Human-Robot Surface System Options

Rover Scouts: low mass; speed; extended range; tele-present geologist Robot Scout

2 EVA Astronauts Ride Rover

Off-Rover Astronaut Walks

Control station on Mars Surface

2 EVA Astronauts Walk: in-situ expert geologist; moderate range EVA Astronaut

Rover-Assists 2 Astronauts:

joint surveys; load sharing

Control station on Mars Surface

Qualitative Assessment of 5 System Options

Human-Robot Surface System Options	Performance of System Options	Mobile Resources Required
2 EVA Astronauts Walk	Limited Range; at-the-site expert geology	Moderate mass; power
2 EVA Astronauts Ride Rover	Extended range; at-the-site expert geology	Higher mass; power
2 Rover Scouts Controlled from Mars Base	Expert geology tele-presence; extended range	Low mass; low power
Robot Assists 2 EVA Astronauts	Coordinate area coverage; load carry aid	Moderate-Plus mass; power
2 Robots Controlled from Earth	Low effective traverse rate; high autonomy	Lowest mass & power

Human-Robot Mobile System Performance vs Resources --Comparison Referenced to 2 Humans Walking--

Mass, Power, etc.

Forecast for RASC-Enabled Future Missions

SURFACE SYSTEM RESOURCES

Revolutionary SUPER-HUMAN Skills

Functions	In-Space SOA Performance	Revolutionary Performance
BREATHE	Heavy Back-Pack	Miniaturized ISRU
WALK	Suit-Impaired	Unit Suit-Augmented
TALK	Discrete/Selected Sites	Distributed/Selectable; wide-bandwidth
GRASP	Glove Impaired	Glove Augmented
HOP	Short range; unsafe	Long range; safe
TOUCH	Glove Impaired	Glove Augmented
SEE	Daylight; headgear impaired	Day/Night; Multi- Spectral; Zoom In/Out
THINK	Supreme	Supreme-Plus-Plus
THROW	Suit Impaired	Suit Augmented
OTHER	Limited by Human Physiology & Suit	Expands Range of Natural Human Skills

Revolutionary SUPER-ROBOT Skills

Functions	In-Space SOA Performance	Revolutionary Performance
SURVIVE	Solar Power	Live-off-Land
TRAVERSE	Benign Terrain	High-Risk Terrain
COMMUNICATE	Discrete/Selected Sites	Distributed/Selectable; wide-bandwidth
GRASP	Few DOF; small force	Many DOF; large force
НОР	Limited Range; unsafe	Unlimited Range; Safe
TOUCH	Point Sensors	Distributed Skins
SEE	Daylight; headgear impaired	Day/Night; Multi- Spectral; Zoom In/Out
THINK	Moderate	Supreme
LIFT	Low-g Heavy	High-g Heavy
WORK	Focused on Human- Scale Robot; some R & D on miniaturization	Expands Range in size, perception, cognitive and motor skills

SUPER HUMAN+ROBOT ARCHITECTURES

(One Plus One = 999 Billion)

Functions	In-Space SOA Performance	Revolutionary Performance
EXPLORE	Remote Robot Controlled from Earth or LEO	1 Controller Commands Many Robots at Once
MANIPULATE	SRMS & ISS RMS	1 Controller Commands Robot Work Crew
ACCESS	10s of Meters	Multi-Scale; from Nano- to-Macro Scales
WORK	Servicing & Assembly in LEO	Heavy-Duty Assembly; Excavation; Terraform
INTERACT (Human & Robot)	Limited-Autonomy; teleoperation	Minimalist; highest-level commands
COOPERATE	Robot Manipulator Assists Astronauts	Cooperative Human- Robot Teams (beyond LEO)

Future Human-Robot Architectures (Plenty of Room at the Bottom & Top)

Concluding Remarks

- •It is possible to conduct QUANTITATIVE ASSESSMENTS of human, robot, and hybrid human-robot systems
 - •Organize very difficult set of issues into a methodical framework
 - •Produce results that are easy to interpret and understand
 - •Provide comparisons that can be verified, or changed rationally if needed
 - Many different data types (numerical, logical, probabilities, etc.)
- •A STANDARD REFERENCE can be selected and CHANGED easily by the user of the method.
 - •HUMAN-CENTERED or ROBOT-CENTERED
 - •OPTION X-CENTERED (Selectable by User)
- •Value of being able to go back-and-forth from Human-Centered to Robot-Centered and to any designated point of view
 - •Tools for impartial, analytical discussion of human-robot roles
 - •Comparisons that can be free of bias and pre-conceived notions
- •Additional case studies will extend applicability of the method, e.g.,
 - •DISCOVER primitive (Serendipity-Based)
 - •Super-Human-Robot Architectures
 - •Humans Beyond Mars